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1 AN INTRODUCTORY TOUR OF

EARTH’S COSMIC NEIGHBORHOOD

1.1 ANCIENT ATTEMPTS TO DETERMINE
THE SCALE OF THE COSMOS

The science of astronomy developed in many different cul-
tures and from many different motivations. Because even
in cities of the preindustrial world, the stars could be seen
readily at night, the pageant of the sky was an inspira-
tion for, and embodiment of, the myths and legends of al-
most all cultures. Some people tracked the fixed stars and
moving planets with great precision, some for agricultural
purposes (the ancient Egyptians needed to prepare for the
annual flooding of the Nile River valley) and more uni-
versally to attempt to predict the future. The regularity
of the motions of the heavens was powerfully suggestive
of the notion that history itself was cyclical, and hence
predictable. The idea of human history linked to celestial
events remains with us today as the practice of astrology.
In spite of a lack of careful experimental tests, or demon-
strated physical mechanisms, this powerfully attractive be-
lief system is pursued widely with varying amounts of se-
riousness, extending in the early 1980s to the level of the
presidency of the United States.

Although ancient understanding of the nature of the
cosmos varied widely and was usually a reflection of par-
ticular mythologies of a given culture, the classical Greeks
distinguished themselves by their (often successful) at-
tempts to use experiment and deduction to learn about the
universe. Some Greek philosophers understood the spher-
ical nature of Earth and something of the scale of nearby
space. Aristotle, in the fourth century B.C., correctly in-
terpreted lunar eclipses as being due to the shadow of
Earth projected on the surface of the Moon. By noting that
the shadow was rounded, he deduced that Earth must be
spherical; in fact, another acceptable shape based on that
one observation is a disk (figure 1.1). Others, such as Plato,

had much earlier endorsed a spherical shape on aesthetic
grounds.

Eratosthenes, who lived in the third century B.C., made
a remarkably accurate determination of the size of our
planet without having to travel too far. He used the ob-
servation that at high noon on summer solstice (June 21
in our calendar, when the Sun reaches its northernmost
point in the sky of Earth), the Sun was directly overhead
at a site in Syene (now Aswan), Egypt, because no shadow
could be seen in the vertical well shaft. Eratosthenes lived
in Alexandria, due north of Syene, and there he could ob-
serve that the Sun cast a shadow at noon on that same
date of June 21 (figure 1.1).

What did this mean? If Earth were a sphere, then differ-
ent people standing at different locations on Earth at the
same time would see the Sun in different parts of the sky.
By measuring as an angular distance in the sky, the change
in the position of the Sun from one place to another and
knowing the distance between the two stations, one could
then by a simple calculation work out the circumference of
the whole globe. In his home city, Eratosthenes carefully
measured the size of a shadow cast by an obelisk of known
height, at the same time on the same day that no noon-
time shadow occurred at Syene. The angular position of
the Sun, from the size of the shadow at Alexandria, gave
an angle of 7.2 degrees between the position of the Sun at
the two stations, or one-fiftieth of the entire angular extent
of the sky (360 degrees). Therefore, Earth’s circumference,
he knew, must be 50 times the distance between Syene and
Alexandria.

The distance was, however, known only approximately
from the number of days it took a camel to travel between
the two towns and the distance a typical camel walks in
a typical day. Furthermore, to compare the result with
the value we know today, the units of measurement used

3
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Figure 1.1. Two ancient Greek observations of the cosmos: (a) Aristotle’s determination of
Earth’s sphericity via a lunar eclipse; (b) Eratosthenes’ measurement of the size of Earth.
Adapted from Snow (1991).

by the Greeks must be converted to modern ones, which
is also an uncertain exercise. In modern units, the inter-
city distance is 570 miles, or 918 kilometers (km), and
hence Eratosthenes’ experiment yields an Earth circum-
ference of 46,000 km, just 12% too large. This represents
an extraordinary achievement, 2,300 years before human
beings could view the round globe of Earth from space.

Not everything about the cosmos that the Greek philo-
sophers deduced or inferred came out right. The most cel-
ebrated mistake was that of Ptolemy, who lived 400 years
after Eratosthenes and is associated most closely with the
cosmological system in which the Sun and the planets (in
fact, the whole cosmos) were thought to orbit Earth. How-
ever, this was just the penultimate round in a long debate
on the topic: Aristarchus of Samos, a generation before
Eratosthenes, put the Sun at the center with Earth and
the other planets orbiting it. This correct model of the so-
lar system was discredited at the time because the Greeks
could not see the stars shift in position as Earth moved
from one point in its orbit to the opposite side. In fact,
the stars do appear to shift position, as we describe later,
but they are so far away that the shift cannot be detected
with the unaided eye. This the Greeks did not know, and
the failed experiment led them down the wrong path of an
Earth-centered cosmos that would not finally be discarded
until the times of Copernicus and Galileo, over 1,500 years
later.

We should not fault the Greeks for their wrong in-
terpretations, but should admire their startling successes,
which were based on observations unaided by the tech-
nologies available at present, coupled with the disciplined
logic of inductive and deductive reasoning which was the

foundation of the scientific method. Few of us today could
repeat the insights of these extraordinary philosophers. In
point of fact, we in the industrialized world still have a
mindset in essence of an Earth-centered universe: We think
little of the sky, now obscured by the lights of cities and
hence unfamiliar to us, unless it is to wonder when the
Sun will set today, or what the local newspaper horoscope
claims our immediate future will hold.

1.2 BRIEF INTRODUCTION
TO THE SOLAR SYSTEM

The solar system consists of 9 planets, some 60 natural
satellites (or moons), and innumerable small bodies, all
orbiting the Sun. Robotic spacecraft have traversed the
distance to the farthest planet in the solar system, some
6 billion km. The distance to the nearest star, Proxima Cen-
tauri, is 6,000 times greater; hence, we have no hope of see-
ing spacecraft reach such targets in the foreseeable future.
In view of this, the solar system is our cosmic neighbor-
hood, accessible for study by spacecraft and constituting
the setting within which Earth has evolved through time.

Here the solar system is summarized in tutorial form
to provide a context for what follows. The information
presented is the result of at least three millennia of obser-
vations and insights, capped by three decades of intense
scientific study from the ground and space. Some of this
effort is described in the book, but to present a complete
history of the exploration of the solar system would re-
quire a separate volume.

Figure 1.2 is a map of the solar system. The nine plan-
ets fall roughly into three classes according to their size
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Mercury

Venus
Earth

Mars

Asteroids

Typical
comet

Jupiter

Saturn Uranus Pluto

Neptune

Figure 1.2. Schematic map of our solar system, showing the correct relative sizes of orbits but not
of the bodies themselves. Note the small scale of the orbits of terrestrial planet compared to the
vast realm of the outer planets. The Kuiper Belt objects just beyond Neptune’s orbit and the Oort
cloud of comets are described and depicted in chapter 10. Reproduced courtesy of Nancy and Larry
Lebofsky, from Our Solar System, by permission of Arizona Board of Regents.

and composition. The four terrestrial planets – Mercury,
Venus, Earth, and Mars – range in diameter from 4,800 km
(Mercury) to 12,700 km (Earth). They occupy a small, in-
ner region of the solar system, and are composed of a
mixture of rocky and metallic materials.

The four giant or Jovian planets – Jupiter, Saturn,
Uranus, and Neptune – are substantially bigger than Earth,
ranging in diameter from 49,000 km (Neptune) to
142,000 km (Jupiter). They are much farther from the Sun
than are the inner planets: Jupiter’s distance from the Sun
is 5 times that of Earth’s and hence is abbreviated as 5 as-
tronomical units (AU); Neptune is 30 AU from the Sun. In
terms of common units of distance, Earth lies 150 million
km from the Sun, and thus Neptune is more than 4 billion
km from the solar system’s center.

The giant planets are composed of a mixture of rocky
and icy material and varying amounts of gases; Jupiter

and Saturn are mostly hydrogen and helium gas whereas
Uranus and Neptune are predominantly icy and rocky
material with lesser amounts of hydrogen and helium
gas. (Rocky and icy material is used here to mean atoms of
silicon, magnesium, iron, oxygen, carbon, nitrogen, sul-
fur, and others that tend to form rocky and icy materi-
als under conditions of normal pressure. Because of the
intense pressures deep within these giant planets, much
of the icy and rocky material is in atomic form, rather
than the molecular form with which we are fami-
liar.)

Beyond Neptune is the “oddball” planet Pluto, about
2,400 km in diameter (smaller than Earth’s Moon), which
may be the largest of a class of debris left over from the
formation of the solar system. In size and density (amount
of mass per volume in the object), Pluto is remarkably
similar to Triton, the largest moon of Neptune.
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Seven of the planets have at least one moon, with almost
60 such objects known to be orbiting the planets. Some
are small, irregular fragments kilometers across; others –
two moons of Jupiter, one of Saturn – are larger than the
planet Mercury. The giant planets have multiple satellite
systems, some in very regular, circular orbits, which can
be considered as miniature solar systems. Saturn’s largest
moon, Titan, possesses an atmosphere thicker than ours
on Earth; several other moons have tenuous atmospheres,
including our own Moon which exhibits an extremely rar-
efied atmosphere of sodium and potassium. All of the plan-
ets have atmospheres, though that of Mercury is like our
Moon’s in being very tenuous.

The four giant planets have ring systems composed of
debris from house-sized to dust, which orbits in the equa-
torial plane of the planet. Saturn’s famous ring system is
considerably more massive than those of the other major
planets. None of the terrestrial planets possesses an orga-
nized ring system.

The solar system exhibits several regularities in its struc-
ture, which are important in understanding its origin, as
we discuss later. All planets orbit the sun in nearly circular
orbits, close to the plane of the Sun’s equator, with the ex-
ception of Pluto, the orbit of which is both inclined (tilted
relative to the sun’s equator) and eccentric (significantly
noncircular). All orbits are in the same direction; by con-
vention, they are counterclockwise around the Sun when
viewed from above the Sun’s northern hemisphere. With
two exceptions, Venus and Uranus, all planetary spins are
in the same, counterclockwise, direction. However, the
planetary rotational axes are all tilted relative to their or-
bital planes by varying degrees.

There is a strong correlation between the properties
of the planets and their location in the solar system. The
four terrestrial planets, which contain proportionately lit-
tle water and gases, are closest to the Sun and not very
massive compared to the giant planets. From Jupiter out-
ward, solid objects (moons and Pluto) contain significant
amounts of water ice and more volatile species. (Here,
volatile refers to the tendency for a material to transform
from a condensed state to a vapor.) The four giant planets
seem to be of two classes, with the more gaseous planets,
Jupiter and Saturn, closer to the Sun.

Viewed from a neighboring star, the most notable char-
acteristic of the solar system would not be the planets, but
the debris of small solid bodies outside Pluto’s orbit. Only
in recent years has the structure of these debris regions be-
come evident. The orbit of Pluto extends from just inside
Neptune’s (29 AU) outward to nearly 50 AU. Within this

region over 60 objects with diameters of a hundred kilo-
meters or so have been detected orbiting the Sun. They are
thought to be representative of a class of material, referred
to as Kuiper belt objects, that are the leftover debris from
the formation of the outer planets. The inner edge of this
thick belt of material is defined by the giant planets, whose
strong gravitational fields have swept the region from 5 to
30 AU clear of debris.

Well beyond the Kuiper objects lies more icy and rocky
material in distant orbits ranging out to perhaps
100,000 AU from the Sun. The presence of such material
is inferred from the existence of comets, rock-ice bodies
perhaps 1–10 kilometers in diameter that come into the
inner solar system on highly noncircular, that is, elliptical,
orbits. Careful plotting of the paths of comets indicates
that most of the orbits originate in an ill-defined shell of
material termed the Oort cloud. The comets are the small
fraction of Oort cloud objects that fall inward to the Sun
after having been perturbed by close-passing stars. The
total number of comet-sized Oort cloud objects may ap-
proach one trillion.

Remote observation of comets as they pass through the
inner solar system suggests that they are accumulations of
dust, organic material, water ice, and frozen gases. The
Oort cloud material is thought to have been ejected from
the 5- to 30-AU region by the giant planets after their
formation and, in addition to comet-sized bodies, both
larger and smaller objects may reside in this cloud.

Between the orbits of Mars and Jupiter lie belts of
rocky objects known as asteroids. The largest asteroids
are several hundred kilometers across; in number and total
mass they are minuscule compared to the Oort cloud and
the Kuiper belt. They are thought to be debris that never
formed into a planet because of the proximity of Jupiter,
whose gravitational field prevented efficient growth of a
large body from smaller ones. Another collection of as-
teroids crosses the orbit of Earth–the so-called near-Earth
asteroids, some of which may be old comets that have
lost their mantles of ice after many passes by the Sun.
Finally, lanes and regions of dust released from comets
or asteroids lace the solar system; the precise distribu-
tion of this material, some of which can be seen faintly
after sunset as the zodiacal light, remains somewhat un-
certain.

The history of collisions between the numerous bits
of small debris and the planets is recorded by the ubiqui-
tous existence of craters throughout the solar system. Even
Earth shows the scars, Meteor Crater in Arizona being a
famous recent example. As we shall see, impacts may have
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played key roles in the origin and evolution of life on this
planet Earth.

1.3 QUESTIONS

a. Consider how you have responded to a controversial
scientific or technological issue. Did you try to weigh
rationally the pros and cons, or did you respond on the
basis of your instincts or emotions?

b. Imagine that the knowledge leading to atomic energy
had never been achieved. What are some of the things
that might have been different about the period from
World War II to today? Can you say whether the world
would have been better or worse off?
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